Вконтакте Facebook Twitter Лента RSS

Повышение эффективности работы холодильной установки за счет переохлаждения хладагента. Влияние перегрева на холодопроизводительность холодильной системы Заправка кондиционера хладагентом по перегреву

19.10.2015

Степень переохлаждения жидкости, получаемой на выходе конденсатора, является важным показателем, который характеризует стабильную работу холодильного контура. Переохлаждением называют температурную разность между жидкостью и конденсацией при данном давлении.

При нормальном атмосферном давлении, конденсация воды имеет температурный показатель 100 градусов по Цельсию. Согласно законам физики, вода, которая 20 градусов, считается переохлажденной на 80 градусов по Цельсию.

Переохлаждение на выходе из теплообменника изменяется как разность между температурной жидкости и конденсации. Исходя из рисунка 2.5, переохлаждение будет равно 6 К или 38-32.

В конденсаторах с воздушным охлаждением показатель переохлаждения должен быть от 4 до 7 К. В случае если он имеет иную величину, то это говорит о нестабильной работе.

Взаимодействие конденсатора и вентилятора: перепад температур воздуха.

Нагнетаемый воздух вентилятором имеет показатель 25 градусов по Цельсию (рисунок 2.3). Он забирает тепло у фреона, за счет чего его температура меняется до 31 градуса.


На рисунке 2.4 изображено более детальное изменение:

Tae - температурная отметка воздуха, подаваемого в конденсатор;

Tas – воздух с новой температурой конденсатора после охлаждения;

Tk –с манометра показания о температуре конденсации;

Δθ – разность температурных показателей.

Вычисление температурного перепада в конденсаторе с воздушным охлаждением происходит по формуле:

Δθ =(tas — tae), где К имеет пределы 5–10 К. На графике это значение равно 6 К.

Разница перепада температур в точке D, то есть на выходе из конденсатора, в данном случае равняется 7 К, так как находиться в том же пределе. Температурный напор составляет 10-20 К, на рисунке это (tk- tae). Чаще всего значение данного показателя останавливается на отметке в 15 К, но в этом примере – 13 К.

Carrier

Инструкция по монтажу, наладке и обслуживанию

РАСЧЕТ ПЕРЕОХЛАЖДЕНИЯ И ПЕРЕГРЕВА

Переохлаждение

1. Определение


конденсации насыщенного пара хладагента (Тк)
и температурой в жидкостной линии (Тж):

ПО = Тк Тж.

Коллектор

температуры)


3. Этапы измерения

электронного на жидкостную линию рядом с фильтром
осушителем. Убедитесь, что поверхность трубы чистая,
и термометр плотно касается ее. Покройте колбу или
датчик пеной, чтобы теплоизолировать термометр
от окружающего воздуха.


низкого давления).

давление в линии нагнетания.

Измерения должны производиться, когда агрегат
работает в оптимальных проектных условиях и развивает
максимальную производительность.

4. По таблице пересчета давления в температуру для R 22

найдите температуру конденсации насыщенного пара
хладагента (Тк).

5. Запишите температуру, измеренную термометром

на жидкостной линии (Тж) и вычтите ее из температуры
конденсации. Полученная разница и будет значением
переохлаждения.

6. При правильной заправке системы хладагентом

переохлаждение составляет от 8 до 11°С.
Если переохлаждение оказалось меньше 8°С, нужно
добавить хладагента, а если больше 11°С удалить
излишки фреона.

Давление в линии нагнетания (по датчику):

Температура конденсации (из таблицы):

Температура в жидкостной линии (по термометру): 45°С

Переохлаждение (по расчету)

Добавьте хладагент согласно результатам расчета.

Перегрев

1. Определение

Переохлаждение это разность между температурой
всасывания (Тв) и температурой насыщенного испарения
(Ти):

ПГ = Тв Ти.

2. Оборудование для измерения

Коллектор
Обычный или электронный термометр (с датчиком

температуры)

Фильтр или теплоизолирующая пена
Таблица пересчета давления в температуру для R 22.

3. Этапы измерения

1. Поместите колбу жидкостного термометра или датчик

электронного на линию всасывания рядом с
компрессором (10 20 см). Убедитесь, что поверхность
трубы чистая, и термометр плотно касается ее верхней
части, иначе показания термометра будут неверны.
Покройте колбу или датчик пеной, чтобы теплоизо
лировать термометр от окружающего воздуха.

2. Вставьте коллектор в линию нагнетания (датчик

высокого давления) и линию всасывания (датчик
низкого давления).

3. После того, как условия стабилизируются, запишите

давление в линии нагнетания. По таблице пересчета
давления в температуру для R 22 найдите температуру
насыщенного испарения хладагента (Ти).

4. Запишите температуру, измеренную термометром

на линии всасывания (Тв) в 10 20 см от компрессора.
Проведите несколько измерений и рассчитайте
среднюю температуру линии всасывания.

5. Вычтите температуру испарения из температуры

всасывания. Полученная разница и будет значением
перегрева хладагента.

6. При правильной настройке расширительного вентиля

перегрев составляет от 4 до 6°С. При меньшем
перегреве в испаритель попадает слишком много
хладагента, и нужно прикрыть вентиль (повернуть винт
по часовой стрелке). При большем перегреве в
испаритель попадает слишком мало хладагента, и
нужно приоткрыть вентиль (повернуть винт против
часовой стрелки).

4. Пример расчета переохлаждения

Давление в линии всасывания (по датчику):

Температура испарения (из таблицы):

Температура в линии всасывания (по термометру): 15°С

Перегрев (по расчету)

Приоткройте расширительный вентиль согласно

результатам расчета (слишком большой перегрев).

ВНИМАНИЕ

ЗАМЕЧАНИЕ

После регулировки расширительного вентиля не забудьте
вернуть на место его крышку. Изменяйте перегрев только
после регулировки переохлаждения.

Варианты работы холодильной установки: работа с нормальным перегревом; с недостаточным перегревом; сильным перегревом.

Работа с нормальным перегревом.

Схема холодильной установки

Например, хладагент подаётся под давлением 18 бар, на всасывании давление 3 бара. Температура, при которой в испарителе кипит хладагент t 0 = −10 °С, на выходе из испарителя температура трубы с хладагентом t т = −3 °С.

Полезный перегрев ∆t = t т − t 0 = −3− (−10)= 7. Это нормальная работа холодильной установки с воздушным теплообменником . В испарителе фреон выкипает полностью примерно в 1/10 части испарителя (ближе к концу испарителя), превращаясь в газ. Дальше газ будет нагреваться температурой помещения.

Перегрев недостаточный.

Температура на выходе будет уже, к примеру, не −3, а −6 °С. Тогда перегрев составляет всего 4 °С. Точка, где перестаёт кипеть жидкий хладагент, перемещается ближе к выходу испарителя. Таким образом, большая часть испарителя заполняется жидким хладагентом. Такое может случиться, если терморегулирующий вентиль (ТРВ) будет подавать больше фреона в испаритель.

Чем больше фреона будет находиться в испарителе, тем больше будет образовываться паров, тем выше будет давление на всасывании и повысится температура кипения фреона (допустим уже не −10, а −5 °С). Компрессор начнет заливать жидким фреоном, потому что давление увеличилось, расход хладагента увеличился и компрессор не успевает откачать все пары (если компрессор не имеет дополнительных мощностей). При такой работе холодопроизводительность повысится, но компрессор может выйти из строя.

Сильный перегрев.

Если производительность ТРВ будет меньше, то фреона будет поступать в испаритель меньше и выкипать он будет раньше, (точка выкипания сместиться ближе к входу испарителя). Весь ТРВ и трубки после него обмерзнут и покроются льдом, а процентов 70 испарителя не обмерзнут вообще. Пары фреона в испарителе будут нагреваться, и их температура может достигнуть температуры в помещении, отсюда ∆t ˃ 7. При этом холодопроизводительность системы понизится, давление на всасывании понизится, нагретые пары фреона могут вывести из строя статор компрессора.

Повышение эффективности работы холодильной

установки за счет переохлаждения хладагента

ФГОУ ВПО «Балтийская государственная академия рыбопромыслового флота»,

Россия, *****@***ru

Уменьшение потребления электрической энергии является очень важным аспектом жизни в связи со сложившейся энергетической ситуацией в стране и в мире. Снижения энергопотребления холодильными установками можно достичь повышением холодопроизводительности холодильных установок. Последнее может быть осуществлено с помощью различных видов переохладителей. Таким образом, рассмотрены различные виды переохладителей и разработан наиболее эффективный.

холодопроизводительность, переохлаждение, регенеративный теплообменник, переохладитель, межтрубное кипение, кипение внутри труб

За счет переохлаждения жидкого хладагента перед дросселированием может быть достигнуто значительное повышение эффективности работы холодильной установки. Переохлаждения хладагента можно добиться за счет установки переохладителя. Переохладитель жидкого холодильного агента, идущего из конденсатора при давлении конденсации к регулирующему вентилю, предназначен для его охлаждения ниже температуры конденсации. Существуют различные способы переохлаждения: за счет кипения жидкого холодильного агента при промежуточном давлении, за счет парообразного агента, выходящего из испарителя, и с помощью воды. Переохлаждение жидкого холодильного агента позволяет увеличить холодопроизводительность холодильной установки.

Одним из видов теплообменных аппаратов, предназначенных для переохлаждения жидкого хладагента, являются регенеративные теплообменники. В аппаратах данного вида переохлаждение холодильного агента достигается за счет парообразного агента, выходящего из испарителя.


В регенеративных теплообменниках происходит теплообмен между жидким холодильным агентом, идущим из ресивера к регу­лирующему вентилю, и парообразным агентом, выходящим из испарителя. Регенеративные теплообменники используются для выполнения одной или нескольких следующих функций:

1) повышения термодинамической эффективности холодиль­ного цикла;

2) переохлаждения жидкого холодильного агента для пред­отвращения парообразования перед регулирующим вентилем ;

3) испарения небольшого количества жидкости, уносимой из испарителя. Иногда при использовании испарителей затоплен­ного типа богатый маслом слой жидкости намеренно отводят во всасывающую линию для обеспечения возврата масла. В этих случаях регенеративные теплообменники служат для испарения жидкого холодильного агента из раствора.

На рис. 1 представлена схема установки РТ.

Рис.1. Схема установки регенеративного теплообменника

Fig. 1. The scheme of installation of the regenerative heat exchanger

Простейшая форма теплообменника получается при метал­лическом контакте (сварке, пайке) между жидкостным и паровым трубопроводами для обеспечения противотока. Оба трубопровода покрываются изоляцией как единое целое. Для обеспечения макси­мальной производительности жидкостная линия должна быть размещена ниже всасывающей, поскольку жидкость во всасыва­ющем трубопроводе может течь вдоль нижней образующей .

Наибольшее распространение в отечественной промышлен­ности и за рубежом получили кожухозмеевиковые и кожухотрубные регенеративные теплообменники. В малых холодильных машинах, выпускаемых зарубежными фирмами, иногда исполь­зуются змеевиковые теплообменники упрощенной конструкции, в которой жидкостная трубка навивается на всасывающую. Фирма «Данхэм-Баш» (Dunham-Busk, США) для улучшения теплопере­дачи навитый на всасывающую линию жидкостный змеевик за­ливает алюминиевым сплавом. Всасывающая линия снабжается внутренними гладкими продольными ребрами, обеспечивающими хорошую теплоотдачу к пару при минимальном гидравлическом сопротивлении. Эти теплообменники предназначены для устано­вок холодопроизводительностью менее 14 кВт.

Для установок средней и крупной производительности широко применяются кожухозмеевиковые регенеративные теплообмен­ники. В аппаратах этого типа жидкостный змеевик (или несколько параллельных змеевиков), навитый вокруг вытеснителя, помещен в цилиндрический сосуд. Пар проходит в кольцевом пространстве между вытеснителем и кожухом, при этом обеспечивается более полное омывание паром поверхности жидкостного змеевика. Змеевик производится из гладких, а чаще из оребренных снаружи труб.

При использовании теплообменников типа «труба в трубе» (как правило, для малых холодильных машин) особое внимание уделяют интенсификации теплообмена в аппарате. С этой целью либо применяют оребренные трубы, либо используют всевозмож­ные вставки (проволочные, ленточные и т. д.) в паровой области или в паровой и жидкостной областях (рис. 2) .

Рис.2. Теплообменник регенеративный типа «труба в трубе»

Fig. 2. Regenerative heat exchanger type “pipe in pipe”

Переохлаждение за счет кипения жидкого холодильного агента при промежуточном давлении может осуществляться в промежуточных сосудах и экономайзерах.

В низкотемпературных холодильных установках двухступенча­того сжатия работа промежуточного сосуда, устанавливаемого между компрессорами первой и второй ступеней, во многом опре­деляет термодинамическое совершенство и экономичность работы всей холодильной установки. Промежуточный сосуд выполняет следующие функции:

1) «сбив» перегрева пара после компрессора первой ступени, что приводит к уменьшению работы, затрачиваемой ступенью высокого давления;


2) охлаждение жидкого хладагента перед поступлением его к регулирующему вентилю до температуры, близкой или равной температуре насыщения при промежуточном давлении, что обеспечивает снижение потерь в регулирующем вентиле;

3) частичное отделение масла.

В зависимости от типа промежуточного сосуда (змеевиковый или беззмеевиковый) осуществляется схема с одно - или двухступенчатым дросселированием жидкого хладагента. В безнасосных системах предпочтительным является при­менение змеевиковых промежуточных сосудов, в которых жидкость находится под давлением конденсации, обеспечивающим подачу жидкого хладагента в испарительную систему многоэтажных холодильников.

Наличие змеевика исключает также дополнительное замасли­вание жидкости в промежуточном сосуде.

В насосно-циркуляционных системах, где подача жидкости в испарительную систему обеспечивается за счет напора насоса, могут быть применены беззмеевиковые промежуточные сосуды. Использование в настоящее время в схемах холодильных уста­новок эффективных маслоотделителей (промывных или циклонных на стороне нагнетания, гидроциклонов - в испарительной си­стеме) также делает возможным применение беззмеевиковых промежуточных сосудов - аппаратов более эффективных и более простых в конструктивном исполнении .

Переохлаждение водой может достигаться в противоточных переохладителях.

На рис. 3 показан двухтрубный противоточный переохла­дитель. Он состоит из одной или двух секций, собранных из по­следовательно включенных двойных труб (труба в трубе). Внутрен­ние трубы соединены чугунными калачами, наружные - сварены. Жидкое рабочее вещество протекает в межтрубном пространстве в противоток охлаждающей воде, движущейся по внутренним тру­бам. Трубы - стальные бесшовные. Температура выхода рабочего вещества из аппарата обычно на 2-3 °С выше температуры посту­пающей охлаждающей воды .

труба в трубе"), в каждую из которых через распределитель подается жидкий хладагент, а в межтрубное пространство поступает холодильный агент из линейного ресивера, основным недостатком является ограниченный срок службы из-за быстрого выхода из строя распределителя. Промежуточный сосуд, в свою очередь, можно использовать только для систем охлаждения , работающих на аммиаке .



Рис. 4. Эскиз переохладителя жидкого фреона с кипением в межтрубном пространстве

Fig. 4. The sketch of supercooler with boiling of liquid Freon in intertubes space

Наиболее подходящим устройством является переохладитель жидкого фреона с кипением в межтрубном пространстве. Схема такого переохладителя представлена на рис. 4.

Конструктивно он представляет собой кожухотрубный теплообменный аппарат, в межтрубном пространстве которого кипит холодильный агент, в трубы поступает хладагент из линейного ресивера, переохлаждается и затем подается к испарителю. Основным недостатком такого переохладителя является вспенивание жидкого фреона за счет образования масляной пленки на его поверхности, что приводит к необходимости наличия специального устройства для удаления масла.

Таким образом, была разработана конструкция, в которой предлагается переохлаждаемый жидкий холодильный агент из линейного ресивера подавать в межтрубное пространство, а в трубах обеспечить (путем предварительного дросселирования) кипение холодильного агента. Данное техническое решение поясняется рис. 5.

Рис. 5. Эскиз переохладителя жидкого фреона с кипением внутри труб

Fig. 5. The sketch of supercooler with boiling of liquid Freon inside pipes

Данная схема устройства позволяет упростить конструкцию переохладителя, исключая из нее устройство для удаления масла с поверхности жидкого фреона.

Предлагаемый переохладитель жидкого фреона (экономайзер) представляет собой корпус, содержащий пакет теплообменных труб с внутренним оребрением, также патрубок для входа охлаждаемого хладагента, патрубок для выхода охлажденного хладагента, патрубки для входа сдросселированного хладагента, патрубок для выхода парообразного хладагента.

Рекомендуемая конструкция позволяет избежать вспенивания жидкого фреона, повысить надежность и обеспечить более интенсивное переохлаждение жидкого хладагента, что, в свою очередь, ведет к увеличению холодопроизводительности холодильной установки.

СПИСОК ИСПОЛЬЗОВАННЫХ ЛИТЕРАТУРНЫХ ИСТОЧНИКОВ

1. Зеликовский по теплообменным аппаратам малых холодильных машин. - М.: Пищевая промышленность, 19с.

2. Ионов производства холода. - Калининград: Кн. изд-во, 19с.

3. Данилова аппараты холодильных установок. - М.: Агропромиздат, 19с.

IMPROVING THE EFFICIENCY OF REFRIGERATING PLANTS DUE SUPERCOOLING OF REFRIGERANT

N. V. Lubimov, Y. N. Slastichin, N. M. Ivanova

Supercooling of liquid Freon in front of the evaporator allows to increase refrigerating capacity of a refrigerating machinery. For this purpose we can use regenerative heat exchangers and supercoolers. But more effective is the supercooler with boiling of liquid Freon inside pipes.

кefrigerating capacity, supercooling, supercooler

В этой статье мы расскажем о самом точном способе заправки кондиционеров.

Заправлять можно любые фреоны. Дозаправлять - только однокомпонентные фреоны (напр.: R-22) или изотропные (условно изотропные, напр.: R-410) смеси

При проведении диагностики систем охлаждения и кондиционирования, процессы, происходящие внутри конденсатора, скрыты от сервисного инженера, а часто именно по ним можно понять, почему упала эффективность системы в целом.

Кратко рассмотрим их:

  1. Перегретые пары хладагента попадают из компрессора в конденсатор
  2. Под действием воздушного потока температура фреона снижается до температуры конденсации
  3. До тех пор, пока последняя молекула фреона не перейдет в жидкую фазу, на протяжении всего участка магистрали, на котором происходит процесс конденсации, температура остается одинаковой.
  4. Под действием охлаждающего потока воздуха температура хладагента снижается с температуры конденсации до температуры охлажденного жидкого фреона
Внутри конденсатора давление фреона одинаковое.
Зная давление, по специальным таблицам производителя фреона можно определить температуру конденсации в текущих условиях. Разность между температурой конденсации и температурой охлажденного фреона на выходе из конденсатора — температура переохлаждения — величина обычно известная (уточняется у производителя системы) и диапазон этих величин для данной системы фиксирован (например: 10-12 °C).

Если значение переохлаждения ниже указанного производителем диапазона — значит фреон не успевает охладиться в конденсаторе — его недостаточно и требуется дозаправка. Недостаток фреона снижает эффективность работы системы и увеличивает нагрузку на нее.

Если значение переохлаждения выше диапазона — фреона слишком много, требуется слить часть до достижения оптимального значения. Переизбыток фреона увеличивает нагрузку на систему и снижает срок ее службы.

Дозаправка по переохлажению без использования :

  1. Подключаем манометрический коллектор и баллон с фреоном к системе.
  2. Устанавливаем термометр/датчик температуры на линию высокого давления.
  3. Запускаем систему.
  4. По манометру на линии высокого давления (жидкостной линии) измеряем давление, вычисляем температуру конденсации для данного фреона.
  5. По термометру контролируем температуру переохлажденного фреона на выходе из конденсатора (она должна быть в диапазоне значений суммы температуры конденсации и температуры переохлаждения).
  6. Если температура фреона превышает допустимую (температура переохлаждения ниже требуемого диапазона) — фреона недостаточно, потихоньку добавляем его в систему до достижения нужной температуры
  7. Если температура фреона ниже допустимой (температура переохлаждения выше диапазона) — фреон в избытке, часть надо потихоньку стравливать до достижения нужной температуры.
С использованием данный процесс упрощается в разы (схема подключения в рисунках есть в инструкции по эксплуатации):
  1. Сбрасываем прибор в ноль, переводим в режим переохлаждения, выставляем тип фреона.
  2. Подключаем манометрический коллектор и баллон с фреоном к системе, причем шланг высокого давления (жидкостный) подключаем через Т-образный тройник, поставляемый вместе с прибором.
  3. Устанавливаем датчик температуры SH-36N на линию высокого давления.
  4. Включаем систему, на экране отобразится значение переохлаждения, сравниваем его с требуемым дипазоном и в зависимости от того, выше или ниже отображаемое значение, потихоньку стравливаем или добавляем фреон.
Данный способ дозаправки точнее, чем заправка по объему или по весу, поскольку отсутствуют промежуточные вычисления, которые порой бывают приблизительными.

Алексей Матвеев,
технический специалист компании «Расходка»

© 2024 Про уют в доме. Счетчики газа. Система отопления. Водоснабжение. Система вентиляции